340 research outputs found

    Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2

    Get PDF
    The protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is cleaved and activated by trypsin. We investigated the expression of PAR-2 and the role of trypsin in cell proliferation in human colon cancer cell lines. A total of 10 cell lines were tested for expression of PAR-2 mRNA by Northern blot and RT-PCR. PAR-2 protein was detected by immunofluorescence. Trypsin and the peptide agonist SLIGKV (AP2) were tested for their ability to induce calcium mobilization and to promote cell proliferation on serum-deprived cells. PAR-2 mRNA was detected by Northern blot analysis in 6 out of 10 cell lines [HT-29, Cl.19A, Caco-2, SW480, HCT-8 and T84]. Other cell lines expressed low levels of transcripts, which were detected only by RT-PCR. Further results were obtained with HT-29 cells: (1) PAR-2 protein is expressed at the cell surface; (2) an increase in intracellular calcium concentration was observed upon trypsin (1–100 nM) or AP2 (10–100 μM) challenges; (3) cells grown in serum-deprived media supplemented with trypsin (0.1–1 nM) or AP2 (1–300 μM) exhibited important mitogenic responses (3-fold increase of cell number). Proliferative effects of trypsin or AP2 were also observed in other cell lines expressing PAR-2. These data show that subnanomolar concentrations of trypsin, acting at PAR-2, promoted the proliferation of human colon cancer cells. The results of this study indicate that trypsin could be considered as a growth factor and unravel a new mechanism whereby serine proteases control colon tumours. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Citizen Science Observation of a Gamma‐Ray Glow Associated With the Initiation of a Lightning Flash

    Get PDF
    シチズンサイエンスで挑む雷の謎 --宇宙線と雷雲の相互作用は、雷の始まりに影響を与えるのか?--. 京都大学プレスリリース. 2023-07-10.Zeus also plays billiards: Citizen-supported Thundercloud Project may lead to better understanding of lightning's origins. 京都大学プレスリリース. 2023-07-12.Gamma-ray glows are observational evidence of relativistic electron acceleration due to the electric field in thunderclouds. However, it is yet to be understood whether such relativistic electrons contribute to the initiation of lightning discharges. To tackle this question, we started the citizen science “Thundercloud Project, ” where we map radiation measurements of glows from winter thunderclouds along Japan's sea coast area. We developed and deployed 58 compact gamma-ray monitors at the end of 2021. On 30 December 2021, five monitors simultaneously detected a glow with its radiation distribution horizontally extending for 2 km. The glow terminated coinciding with a lightning flash at 04:08:34 JST, which was recorded by the two radio-band lightning mapping systems, FALMA and DALMA. The initial discharges during the preliminary breakdown started above the glow, that is, in vicinity of the electron acceleration site. This result provides one example of possible connections between electron acceleration and lightning initiation

    Chemosensitivity of radioresistant cells in the multicellular spheroids of A549 lung adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relapse of cancer after radiotherapy is a clinical knotty problem. Previous studies have demonstrated that the elevation of several factors is likely in some way to lead to the development of treatment tolerance, so it is necessary to further explore the problem of re-proliferated radioresistant cells to chemotherapeutic agents. In the present study, we aimed to investigate the chemosensitivity of radioresistant cells originated from the multicellular spheroids of A549 lung adenocarcinoma.</p> <p>Methods</p> <p>After irradiated with 25 Gy of 6 MV X-ray to A549 multicellular spheroids, whose 10th re-proliferated generations were employed as radioresistant cells, and the control groups were A549 parental cells and MCF7/VCR resistant cells. The chemo-sensitivity test was made by six kinds of chemotherapeutic drugs which were DDP, VDS, 5-Fu, HCP, MMC and ADM respectively, while verapamil (VPL) was used as the reversal agent. Then the treatment effect was evaluated by MTT assay, and the multidrug resistant gene expressions of <it>mdr1 </it>and <it>MRP </it>were measured by RT-PCR.</p> <p>Results</p> <p>Both A549 parental cells and A549 derived radioresistant cells were resistant to DDP, but sensitive to VDS, 5-Fu, HCP, MMC and ADM. The inhibitory rates of VPL to these two types of cell were 98% and 25% respectively (P < 0.001). In addition, without drugs added, the absorbance value (A value) of A549 parental cells was 2-folds higher than that of their radioresistant cells (P < 0.001). As to the MCF7/VCR cells, they were resistant to DDP and VDS, but slight sensitive to MMC, ADM, 5-Fu, and HCP with 80% of inhibitory rate to VPL. The subsequent RT-PCR demonstrated that the <it>Mdr1</it>/β2-MG and <it>MRP</it>/β2-MG of all A549 cells were about 0 and 0.7 respectively, and those of MCF7/VCR cells were 35 and 4.36.</p> <p>Conclusion</p> <p>The chemosensitivity of A549 radioresistant cells had not changed markedly, and the decreased sensitivity to VPL could not be explained by the gene expression of <it>mdr1 </it>and <it>MRP</it>. It is possible that the changes in the cell membrane and decreased proliferate ability might be attributed to the resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to radioresistant cells. Therefore, the new biological strategy needs to be developed to treat recurring radioresistant tumor in combination with chemotherapy.</p

    The Heterotrimeric Laminin Coiled-Coil Domain Exerts Anti-Adhesive Effects and Induces a Pro-Invasive Phenotype

    Get PDF
    Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Acatalasemic mice are mildly susceptible to adriamycin nephropathy and exhibit increased albuminuria and glomerulosclerosis

    Get PDF
    Background: Catalase is an important antioxidant enzyme that regulates the level of intracellular hydrogen peroxide and hydroxyl radicals. The effects of catalase deficiency on albuminuria and progressive glomerulosclerosis have not yet been fully elucidated. The adriamycin (ADR) nephropathy model is considered to be an experimental model of focal segmental glomerulosclerosis. A functional catalase deficiency was hypothesized to exacerbate albuminuria and the progression of glomerulosclerosis in this model. Methods: ADR was intravenously administered to both homozygous acatalasemic mutant mice (C3H/AnLCs(b)Cs(b)) and control wild-type mice (C3H/AnLCs(a)Cs(a)). The functional and morphological alterations of the kidneys, including albuminuria, renal function, podocytic, glomerular and tubulointerstitial injuries, and the activities of catalase were then compared between the two groups up to 8 weeks after disease induction. Moreover, the presence of a mutation of the toll-like receptor 4 (tlr4) gene, which was previously reported in the C3H/HeJ strain, was investigated in both groups. Results: The ADR-treated mice developed significant albuminuria and glomerulosclerosis, and the degree of these conditions in the ADR-treated acatalasemic mice was higher than that in the wild-type mice. ADR induced progressive renal fibrosis, renal atrophy and lipid peroxide accumulation only in the acatalasemic mice. In addition, the level of catalase activity was significantly lower in the kidneys of the acatalasemic mice than in the wild-type mice during the experimental period. The catalase activity increased after ADR injection in wild-type mice, but the acatalasemic mice did not have the ability to increase their catalase activity under oxidative stress. The C3H/AnL strain was found to be negative for the tlr4 gene mutation. Conclusions: These data indicate that catalase deficiency plays an important role in the progression of renal injury in the ADR nephropathy model

    Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    Get PDF
    Introduction: Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics.Methods: We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGFβ1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography.Results: The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGFβ1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice.Conclusions: These data establish a link between hormonal response, proliferation, modulation of MMP activity and maintenance of basement membrane integrity that depend on a balance in the expression levels of PR-A and PR-B isoforms. Notably, concomitant increased proliferation, due to inhibition of TGFβ1 activation, and loss of basement membrane integrity, via increased MMP-2 activity, appear to be prerequisites for the PR-A hyperplastic phenotype.Fil: Simian, Marina. Lawrence Berkeley National Laboratory; Estados Unidos. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Bissell, Mina J.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Barcellos Hoff, Mary H.. Lawrence Berkeley National Laboratory; Estados Unidos. NYU Langone Medical Center; Estados UnidosFil: Shyamala, Gopalan. Lawrence Berkeley National Laboratory; Estados Unido

    First experimental determination of the radiative-decay probability of the 31− state in ¹²C for estimating the triple alpha reaction rate in high temperature environments

    Get PDF
    The triple alpha reaction is one of the most important reactions in the nuclear astrophysics. However, its reaction rate in high temperature environments at T₉>2 was still uncertain. One of the major origins of the uncertainty was that the radiative-decay probability of the 3⁻₁ state in ¹²C was unknown. In the present work, we have determined the radiative-decay probability of the 3⁻₁ state to be 1.3[+1.2][-1.1] × 10⁻⁶ by measuring the ¹H(¹²C, ¹²Cp) reaction for the first time, and derived the triple alpha reaction rate in high temperature environments from the measured radiative-decay probability. The present result suggests that the 3⁻₁ state noticeably enhances the triple alpha reaction rate although the contribution from the 3⁻₁ state had been assumed to be small
    corecore